Semidefinite programming bounds for codes and anticodes in Cayley graphs

Frank Vallentin (Universität zu Köln)

Semidefinite Programming and Graph Algorithms Workshop
ICERM
February 12, 2014
Theory
Codes and anticodes in Cayley graphs

\[\text{Cayley}(G, \Sigma) \quad x \sim y \iff xy^{-1} \in \Sigma \]

\[\uparrow \uparrow \]

\text{group} \quad \Sigma \subseteq G, \Sigma = \Sigma^{-1}

undirected graph on \(G \)

may contain loops

\(I \subseteq G \) independent: \(\forall x, y \in I, x \neq y, x \not\sim y \)

find indep. sets in \(\text{Cayley}(G, \Sigma) \)

which are as “large” as possible

max. packing density: \(\bar{\alpha}(\text{Cayley}(G, \Sigma)) \)

\(\bar{\alpha} = 2/5 \)

\(\text{Cayley}(\mathbb{Z}/5\mathbb{Z}, \{1, 4\}) \)
Examples

a) k-intersecting permutations
 \[G = S_n, \quad \Sigma = \{\sigma : \sigma \text{ has } < k \text{ fixed points}\} \]

b) k-intersecting transformations
 \[G = \text{GL}(n, \mathbb{F}_q), \quad \Sigma = \{A : \text{rank}(A - I) > n - k\} \]

c) distance-1-avoiding sets
 \[G = \mathbb{R}^n, \quad \Sigma = S^{n-1} \]

d) sphere packings
 \[G = \mathbb{R}^n, \quad \Sigma = B^\circ_n \]

e) packing of congruent convex bodies
 \[G = \mathbb{R}^n \rtimes \text{SO}(n), \quad \Sigma = \{(x, A) : K^\circ \cap x + AK^\circ \neq \emptyset\} \]
Known results

a), b) optima realized by ”sunflowers”

$$I = \{ \sigma : \sigma(1) = 1, \ldots, \sigma(k) = k \}$$

proved (for n large wrt. k) by Ellis, Friedgut, Pilpel (2011)

$$I = \{ A : Ae_1 = e_1, \ldots, Ae_k = e_k \}$$

conjectured by DeCorte, de Laat, V. (2013)
c)—e) wide open

c) closely related: chromatic number of the plane

d) only known for $n = 2, 3$

e) $\mathcal{K} = \text{regular tetradedron} \quad \overline{\alpha} \in [0.85, 1 - 10^{-26}]$

Chen, Engel, Glotzer (2010)
Gravel, Elser, Kallus (2011)

$\mathcal{K} = \text{regular pentagon} \quad \overline{\alpha} \in [0.92, ?]$

Kuperberg2 (1992)
Bounds

a)–e) upper bound come from spectral techniques (convex optimization & harmonic analysis)

distinction between coding and anticoding problems

\[
\begin{array}{c}
\{ \text{anticoding} \\
\text{coding} \}
\end{array}
\]

problem: if

\[
\begin{array}{c}
e \notin \Sigma \\
e \in \Sigma
\end{array}
\]

packing of point measures vs. continuous measures
Examples

a) k-intersecting permutations
\[G = S_n, \ \Sigma = \{ \sigma : \sigma \text{ has } < k \text{ fixed points} \} \]

b) k-intersecting transformations
\[G = \text{GL}(n, \mathbb{F}_q), \ \Sigma = \{ A : \text{rank}(A - I) > n - k \} \]

c) distance-1-avoiding sets
\[G = \mathbb{R}^n, \ \Sigma = S^{n-1} \]

d) sphere packings
\[G = \mathbb{R}^n, \ \Sigma = B_n^\circ \]

e) packing of congruent convex bodies
\[G = \mathbb{R}^n \rtimes \text{SO}(n), \ \Sigma = \{ (x, A) : \mathcal{K}^\circ \cap x + A\mathcal{K}^\circ \neq \emptyset \} \]
anticodes:

$$\bar{\alpha} \leq \sup \left\{ \frac{\int_G f(x) \, d\mu(x)}{f(e)} : f : G \to \mathbb{R} \text{ pos. type} \right\}$$

$$f(x) = 0 \text{ if } x \in \Sigma$$

\[f\] positive type:

$$\forall x_1, \ldots, x_N \in G : \left(f(x_i x_j^{-1}) \right)_{1 \leq i, j \leq N} \text{ is pos. semidefinite}$$

if \(G \) finite, then optimal solution is Lovász' \(\vartheta(G) \)

If \(I \subseteq G \) indep., then \(1_I * \tilde{1}_I(x) = \int_G 1_I(y)1_I(y x^{-1}) \, d\mu(y) \)

is feasible
anticodes:

\[
\overline{\alpha} \leq \sup \left\{ \frac{\int_G f(x) \, d\mu(x)}{f(e)} : f : G \to \mathbb{R} \text{ pos. type} \right. \\
\left. f(x) = 0 \text{ if } x \in \Sigma \right\}
\]

codes:

\[
\overline{\alpha} \leq \inf \left\{ \frac{f(e)}{\int_G f(x) \, d\mu(x)} : f : G \to \mathbb{R} \text{ pos. type} \right. \\
\left. f(x) \leq 0 \text{ if } x \notin \Sigma \right\}
\]

if \(G = \mathbb{F}_q^n \), then optimal solution is Delsarte’s LP bound
Computing the bounds

* parametrize cone of positive type functions & use conic optimization

construction of positive type functions

\[\pi : G \to U(H_\pi) \] unitary representation, \(h \in H_\pi \)

then \(f(x) = (\pi(x)h, h) \) is positive type

* Gelfand-Raikov 1942:
 * all positive type functions are of this form
 * extreme rays of cone of pos. type functions come from irreducible rep.
Segal-Mautner 1950:

If G is nice and if f is rapidly decreasing:

\[f(x) = \int_{\hat{G}} \text{trace}(\pi(x) \hat{f}(\pi)) \, d\nu(\pi) \]

for positive, trace-class operators $\hat{f}(\pi) : H_\pi \to H_\pi$

\[\hat{G} = \{ \text{irred. unitary rep. of } G \} / \sim \]

$\nu = \text{Plancherel measure on } \hat{G}$

\[\hat{f}(\pi) = \int_{G} f(x) \pi(x^{-1}) \, d\mu(x) \]

Fourier transform
a)—d) \(\Sigma \) closed under conjugation
\[\implies \text{can restrict to central pos. type functions} \]

\(f \) central: \(f(xy) = f(yx) \)

\[f(x) = \int_{\hat{G}} \chi_\pi(x) \bar{f}(\pi) \, d\nu(\pi) \]

\(\chi_\pi \) irreducible character

\[\bar{f}(\pi) \geq 0 \quad \forall \pi \in \hat{G} \]

\(\star \) SDP collapses to LP
\(\star \) can be analyzed by hand for a), c)
\(b) \) not yet
\(\star \) d) Cohn-Elkies (2003) LP bound
e) relevant irred. rep. of $\mathbb{R}^n \rtimes \text{SO}(n)$

$$\pi_a : G \to \text{U}(L^2(S^1)) \quad a > 0$$

$$[\pi_a(x, A)\varphi](\xi) = e^{2\pi i a x \cdot \xi} \varphi(A^{-1}\xi)$$

$$f(x, A) = 2\pi \int_0^\infty \text{trace}(\pi_a(x, A)\hat{f}(a)) a \, da$$

in polar coordinates

$$f(\rho, \theta, \alpha) = \int_0^\infty \sum_{r,s \in \mathbb{Z}} \hat{f}(a)_{r,s} i^{s-r} e^{-i(s\alpha + (r-s)\theta)} J_{s-r}(2\pi a \rho) a \, da$$

$$x = \rho(\cos \theta, \sin \theta), \quad A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
Explicit computations

the problem of finding an optimal function is an infinite-dimensional SDP

goal: reformulate and relax to a finite-dimensional SDP

solve this rigorously on a computer
When
\[\hat{f}(a)_{r,s} = \sum_{k=0}^{d} f_{r,s;k} a^{2k} e^{-\pi a^2} \]
and setting the right \(\hat{f}(a)_{r,s} \) to zero forces
\[f(\rho, \theta, \alpha) = \int_{0}^{\infty} \sum_{r,s \in \mathbb{Z}} \hat{f}(a)_{r,s} i^{s-r} e^{-i(s\alpha+(r-s)\theta)} J_{s-r}(2\pi a\rho) a \, da \]
to become a polynomial times exponential.

If
\[e^{\pi a^2} \sum_{r,s=-N}^{N} \hat{f}(a) y_r y_s \in \mathbb{R}[a, y_{-N}, \ldots, y_N] \]
is a sum of squares, then \(f \) is pos. type.
geometric condition

\[f(x, A) \leq 0 \text{ if } x \not\in K - AK \]
complete SDP (with only a few minor mistakes)
complete SDP (with only a few minor mistakes)
continued
Kuperberg2 (1992)
\[
\bar{\alpha} \in [0.92, \text{?}]
\]

0.98 Oliveira, V. (2013)

- custom made C++ library for generating and analyzing SDPs with SOS constraints
- geometric constraint modeled by a mixture of sampling and SOS
- 0.98 can probably be improved
Improving Cohn-Elkies bound

de Laat, Oliveira, V. (2012)

1. Adding valid inequalities
 (bounds on average contact numbers)

2. More flexible numerical method

<table>
<thead>
<tr>
<th>n</th>
<th>lower bound</th>
<th>Rogers</th>
<th>Cohn-Elkies</th>
<th>new bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.125</td>
<td>0.13127</td>
<td>0.13126</td>
<td>0.13081</td>
</tr>
<tr>
<td>5</td>
<td>0.08839</td>
<td>0.09987</td>
<td>0.09975</td>
<td>0.09955</td>
</tr>
<tr>
<td>6</td>
<td>0.07217</td>
<td>0.08112</td>
<td>0.08084</td>
<td>0.08070</td>
</tr>
<tr>
<td>7</td>
<td>0.0625</td>
<td>0.06981</td>
<td>0.06933</td>
<td>0.06926</td>
</tr>
</tbody>
</table>

density given as point density (= # centers per unit volume)
Rigorous computations

right choice of polynomial basis is extremely important

— using monomial basis fails badly, even for very small degrees

— our choice: \(\mu_k L_{n/2}^{-1}(2\pi t) \)

\(\mu_k \): coefficient of \(L_{n/2}^{-1}(2\pi t) \) with largest absolute value

— csdp: \(d \leq 31 \)

— SDPA-gmp with 256 bits of precision: \(d \leq 51 \)
In order to get mathematical rigorous results:

— perform post processing of the floating point solution

— perturb to a rational solution

— analyze quality-loss of this perturbation

(by estimates of eigenvalues and condition numbers)
Tetrahedra?

★ needs more automatization
 (also the harmonic analysis part)

★ needs more theory for numerical optimization with SOS constraints
 (condition numbers, special numerical solvers)

★ still a challenge
The Oberwolfach Seminars are organized by leading experts in the field, and address to postdocs and Ph.D. students from all over the world. The aim is to introduce the participants to a particular interesting development. The seminars take place at the Mathematisches Forschungsinstitut Oberwolfach. The Institute covers board and lodging. By the support of the Carl Friedrich von Siemens Foundation, travel expenses can be reimbursed up to 150 EUR in average per person. Participants may ask for travel support during their stay in Oberwolfach at the guest office against copy of travel receipts. The number of participants of a seminar is restricted to 25.

Applications including:
- full name and university/institute address
- e-mail address
- short CV, present position, university
- name of supervisor of Ph.D. thesis
- a short summary of previous work and interest
- title, ID and date of the intended seminar

Moduli Spaces of Riemannian Metrics
Organizers: Wilderich Tuschmann, Karlsruhe
David J. Wraith, Maynooth

Date/ID: 8 - 14 June 2014 (ID 1424a)
Deadline for Applications: 1 April 2014

Recent Methods in Sphere Packing and Optimization
Organizers: Christine Bachoc, Bordeaux
Henry Cohn, Cambridge MA
Frank Vallentin, Köln

Date/ID: 8 - 14 June 2014 (ID 1424b)
Deadline for Applications: 1 April 2014

K-Theory for Group C*-Algebras and Semigroup C*-Algebras
Organizers: Joachim Cuntz, Münster
Siegfried Echterhoff, Münster
Xin Li, London
Guoliang Yu, College Station

Date/ID: 12 - 18 October 2014 (ID1442a)
Deadline for Applications: 1 August 2014

High Frequency Approximations
Organizers: Caroline Lasser, München

Mathematisches Forschungsinstitut Oberwolfach